Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Antibiotics (Basel) ; 13(3)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38534662

RESUMEN

Addressing the emergence of antimicrobial resistance (AMR) poses a significant challenge in veterinary and public health. In this study, we focused on determining the presence, phenotypic background, and genetic epidemiology of plasmid-mediated colistin resistance (mcr) in Escherichia coli bacteria isolated from camels farmed in the United Arab Emirates (UAE). Fecal samples were collected from 50 camels at a Dubai-based farm in the UAE and colistin-resistant Gram-negative bacilli were isolated using selective culture. Subsequently, a multiplex PCR targeting a range of mcr-genes, plasmid profiling, and whole-genome sequencing (WGS) were conducted. Eleven of fifty camel fecal samples (22%) yielded colonies positive for E. coli isolates carrying the mcr-1 gene on mobile genetic elements. No other mcr-gene variants and no chromosomally located colistin resistance genes were detected. Following plasmid profiling and WGS, nine E. coli isolates from eight camels were selected for in-depth analysis. E. coli sequence types (STs) identified included ST7, ST21, ST24, ST399, ST649, ST999, and STdaa2. Seven IncI2(delta) and two IncX4 plasmids were found to be associated with mcr-1 carriage in these isolates. These findings represent the first identification of mcr-1-carrying plasmids associated with camels in the Gulf region. The presence of mcr-1 in camels from this region was previously unreported and serves as a novel finding in the field of AMR surveillance.

2.
Animals (Basel) ; 14(5)2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38473171

RESUMEN

Food safety remains a significant global public health concern, with the risk of unsafe food varying worldwide. The economies of several low- and middle-income countries (LMICs) heavily rely on livestock, posing a challenge to ensuring the production of safe food. This review discusses our understanding of pre-harvest critical issues related to food safety in LMICs, specifically focusing on animal-derived food. In LMICs, food safety regulations are weak and inadequately enforced, primarily concentrating on the formal market despite a substantial portion of the food sector being dominated by informal markets. Key critical issues at the farm level include animal health, a low level of good agriculture practices, and the misuse of antimicrobials. Effectively addressing foodborne diseases requires a comprehensive One Health framework. Unfortunately, the application of the One Health approach to tackle food safety issues is notably limited in LMICs. In conclusion, considering that most animal-source foods from LMICs are marketed through informal channels, food safety legislation and policies need to account for this context. Interventions aimed at reducing foodborne bacterial pathogens at the farm level should be scalable, and there should be strong advocacy for the proper implementation of pre-harvest interventions through a One Health approach.

3.
J Infect Public Health ; 16 Suppl 1: 163-171, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37957104

RESUMEN

BACKGROUND: The United Arab Emirates (UAE) has witnessed rapid urbanization and a surge in pet ownership, sparking concerns about the possible transfer of antimicrobial resistance (AMR) from pets to humans and the environment. This study delves into the whole-genome sequencing analysis of ESBL-producing E. coli strains from healthy cats and dogs in the UAE, which exhibit multidrug resistance (MDR). Additionally, it provides a genomic exploration of the mobile colistin resistance gene mcr-1.1, marking the first instance of its detection in Middle Eastern pets. METHODS: We investigate 17 ESBL-producing E. coli strains from healthy UAE pets using WGS and bioinformatics analysis to identify genes encoding virulence factors, assign diverse typing schemes to the isolates, and scrutinize the presence of AMR genes. Furthermore, we characterized plasmid contigs housing the mcr-1.1 gene and conducted phylogenomic analysis to evaluate their relatedness to previously identified UAE isolates. RESULTS: Our study unveiled a variety of virulence factor-encoding genes within the isolates, with fimH emerging as the most prevalent. Regarding ß-lactamase resistance genes, the blaCTX group 1 gene family predominated, with CTX-M-15 found in 52.9% (9/17) of the isolates, followed by CTX-M-55 in 29.4% (5/17). These isolates were categorized into multiple sequence types (STs), with the epidemic ST131 being the most frequent. The presence of the mcr-1.1 gene, linked to colistin resistance, was confirmed in two isolates. These isolates belonged to ST1011 and displayed distinct profiles of ß-lactamase resistance genes. Phylogenomic analysis revealed close connections between the isolates and those from chicken meat in the UAE. CONCLUSION: Our study underscores the presence of MDR ESBL-producing E. coli in UAE pets. The identification of mcr-1.1-carrying isolates warrants the urgency of comprehensive AMR surveillance and highlights the role of companion animals in AMR epidemiology. These findings underscore the significance of adopting a One Health approach to mitigate AMR transmission risks effectively.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Salud Única , Humanos , Gatos , Animales , Perros , Escherichia coli , Colistina/farmacología , Pollos , Antibacterianos/farmacología , Proteínas de Escherichia coli/genética , Emiratos Árabes Unidos/epidemiología , beta-Lactamasas/genética , beta-Lactamasas/farmacología , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/veterinaria , Plásmidos/genética , Genómica , Carne
4.
Foods ; 12(20)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37893619

RESUMEN

Foodborne bacterial infections caused by pathogens are a widespread problem in the Middle East, leading to significant economic losses and negative impacts on public health. This review aims to offer insights into the recent literature regarding the occurrence of harmful E. coli bacteria in the food supply of Arab countries. Additionally, it aims to summarize existing information on health issues and the state of resistance to antibiotics. The reviewed evidence highlights a lack of a comprehensive understanding of the extent to which harmful E. coli genes are present in the food supply of Arab countries. Efforts to identify the source of harmful E. coli in the Arab world through molecular characterization are limited. The Gulf Cooperation Council (GCC) countries have conducted few surveys specifically targeting harmful E. coli in the food supply. Despite having qualitative data that indicate the presence or absence of harmful E. coli, there is a noticeable absence of quantitative data regarding the actual numbers of harmful E. coli in chicken meat supplies across all Arab countries. While reports about harmful E. coli in animal-derived foods are common, especially in North African Arab countries, the literature emphasized in this review underscores the ongoing challenge that harmful E. coli pose to food safety and public health in Arab countries.

5.
Foods ; 12(16)2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37628060

RESUMEN

This study aimed to investigate the occurrence and characteristics of Salmonella isolates in salad vegetables in the United Arab Emirates (UAE). Out of 400 samples tested from retail, only 1.25% (95% confidence interval, 0.41-2.89) were found to be positive for Salmonella, all of which were from conventional local produce, presented at ambient temperature, and featured as loose items. The five Salmonella-positive samples were arugula (n = 3), dill (n = 1), and spinach (n = 1). The Salmonella isolates from the five samples were found to be pan-susceptible to a panel of 12 antimicrobials tested using a disc diffusion assay. Based on whole-genome sequencing (WGS) analysis, only two antimicrobial resistance genes were detected-one conferring resistance to aminoglycosides (aac(6')-Iaa) and the other to fosfomycin (fosA7). WGS enabled the analysis of virulence determinants of the recovered Salmonella isolates from salad vegetables, revealing a range from 152 to 165 genes, collectively grouped under five categories, including secretion system, fimbrial adherence determinants, macrophage-inducible genes, magnesium uptake, and non-fimbrial adherence determinants. All isolates were found to possess genes associated with the type III secretion system (TTSS), encoded by Salmonella pathogenicity island-1 (SPI-1), but various genes associated with the second type III secretion system (TTSS-2), encoded by SPI-2, were absent in all isolates. Combining the mean prevalence of Salmonella with information regarding consumption in the UAE, an exposure of 0.0131 salmonellae consumed per person per day through transmission via salad vegetables was calculated. This exposure was used as an input in a beta-Poisson dose-response model, which estimated that there would be 10,584 cases of the Salmonella infection annually for the entire UAE population. In conclusion, salad vegetables sold in the UAE are generally safe for consumption regarding Salmonella occurrence, but occasional contamination is possible. The results of this study may be used for the future development of risk-based food safety surveillance systems in the UAE and to elaborate on the importance for producers, retailers, and consumers to follow good hygiene practices, particularly for raw food items such as leafy salad greens.

6.
Trop Med Infect Dis ; 8(6)2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37368712

RESUMEN

Contaminated fresh produce has been identified as a vehicle for human foodborne illness. The present study investigated the counts, antimicrobial resistance profile, and genome-based characterization of Escherichia coli in 11 different types of fresh salad vegetable products (n = 400) sampled from retailers in Abu Dhabi and Dubai in the United Arab Emirates. E. coli was detected in 30% of the tested fresh salad vegetable items, with 26.5% of the samples having an unsatisfactory level (≥100 CFU/g) of E. coli, notably arugula and spinach. The study also assessed the effect of the variability in sample conditions on E. coli counts and found, based on negative binominal regression analysis, that samples from local produce had a significantly higher (p-value < 0.001) E. coli count than imported samples. The analysis also indicated that fresh salad vegetables from the soil-less farming system (e.g., hydroponic and aeroponic) had significantly (p-value < 0.001) fewer E. coli than those from traditional produce farming. The study also examined the antimicrobial resistance in E. coli (n = 145) recovered from fresh salad vegetables and found that isolates exhibited the highest phenotypic resistance toward ampicillin (20.68%), tetracycline (20%), and trimethoprim-sulfamethoxazole (10.35%). A total of 20 (13.79%) of the 145 E. coli isolates exhibited a multidrug-resistant phenotype, all from locally sourced leafy salad vegetables. The study further characterized 18 of the 20 multidrug-resistant E. coli isolates using whole-genome sequencing and found that the isolates had varying numbers of virulence-related genes, ranging from 8 to 25 per isolate. The frequently observed genes likely involved in extra-intestinal infection were CsgA, FimH, iss, and afaA. The ß-lactamases gene blaCTX-M-15 was prevalent in 50% (9/18) of the E. coli isolates identified from leafy salad vegetable samples. The study highlights the potential risk of foodborne illness and the likely spread of antimicrobial resistance and resistance genes associated with consuming leafy salad vegetables and emphasizes the importance of proper food safety practices, including proper storage and handling of fresh produce.

7.
Int J Food Microbiol ; 398: 110224, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37167788

RESUMEN

The occurrence and counts of extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli in retail chicken sold in the United Arab Emirates (UAE) were investigated in this study. Results indicated that 79.68 % of chicken carcasses (251/315) sampled from UAE supermarkets harbored ESBL-producing E. coli. About half (51.75 % [163/315]) of the tested samples had an ESBL-producing E. coli count range between ≥3 log10 and < 5 log10 CFU/g. The antimicrobial resistance profiles of a subset of 100 isolates showed high rates of non-susceptibility to clinically significant antibiotics, particularly ciprofloxacin (80 %) and cefepime (46 %). Moreover, 7 % of the isolates exhibited resistance to colistin, with PCR-based screening revealing the presence of the mcr-1 gene in all colistin-resistant isolates. Multiplex PCR screening identified blaCTX-M and blaTEM genes as the most frequently presented genes among the phenotypically confirmed ESBL-producing E. coli. Further whole-genome sequencing and bioinformatic analysis of 27 ESBL-producing E. coli isolates showed that the gene family blaCTX group 1 was the most prevalent, notably CTX-M-55 (55.55 % [15/27]), followed by CTX-M-15 (22.22 % [6/27]). The most common sequence types (STs) were ST359 and ST1011, with three evident clusters identified based on phylogenomic analysis, aligned with isolates from specific production companies. Analysis of plasmid incompatibility types revealed IncFIB, IncFII, Incl2, and IncX1 as the most commonly featured plasmids. The findings of this study indicate a noticeable prevalence and high counts of ESBL-producing E. coli in chicken sampled from supermarkets in the UAE. The high rates of antimicrobial resistance to clinically important antibiotics highlight the potential public health risk associated with consuming chicken contaminated with ESBL-producing E. coli. Overall, this study emphasizes the importance of continued antimicrobial resistance monitoring in the UAE food chain and calls for further exposure risk assessment of the consumption of ESBL-producing E. coli via chicken meat.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Animales , Escherichia coli , Antibacterianos/farmacología , Pollos/genética , Colistina , Supermercados , Emiratos Árabes Unidos , beta-Lactamasas/genética , Farmacorresistencia Bacteriana/genética , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/veterinaria , Proteínas de Escherichia coli/genética , Genómica , Plásmidos , Carne
8.
Animals (Basel) ; 13(10)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37238016

RESUMEN

Extended-spectrum ß-lactamases resistant (ESBL-R) Escherichia coli (E. coli) has been reported from healthy and sick pets. However, data from Middle Eastern countries, including the United Arab Emirates (UAE), are minimal. This study provides the first evidence of ESBL-R E. coli carriage among pets in the UAE. A total of 148 rectal swabs were collected from domestic cats (n = 122) and dogs (n = 26) attending five animal clinics in the UAE. Samples were cultured directly onto selective agar, and suspected colonies were confirmed as ESBL-producing using phenotypic and molecular methods. Confirmed isolates were screened for their phenotypic resistance to twelve antimicrobial agents using the Kirby Bauer method. The owners of the pets completed a questionnaire at the time of sampling, and the data were used to identify risk factors. ESBL-R E. coli was detected in rectal swabs of 35 out of 148 animals (23.65%) (95% confidence interval [CI]: 17.06-31.32). Multivariable logistic regression analysis identified cats and dogs with access to water in ditches and puddles as 3.71 (p-value = 0.020) times more likely to be positive to ESBL-R E. coli than those without access to open water sources. Ciprofloxacin resistance was evident in 57.14% (44/77) of the ESBL-R E. coli isolates. The percentage of resistance to azithromycin and cefepime was 12.99% (10/77) and 48.05% (37/77), respectively. The blaCTX-M gene was detected in 82% of the PCR-screened isolates (n = 50). Multidrug resistance (MDR) phenotypes were evident in 91% (70/77) of the isolates. In conclusion, ESBL-R E. coli was detected at a noticeable rate among healthy pet cats and dogs in the UAE, and the majority are MDR to clinically important antimicrobials such as fluoroquinolones and 3rd and 4th generation cephalosporins. Our results call for strengthening antimicrobial stewardship among companion animal veterinarians in the UAE to reduce the potential transmission of ESBL-R E. coli between pets, humans, and urban environments.

9.
Antibiotics (Basel) ; 12(3)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36978454

RESUMEN

Antimicrobial resistance (AMR) has become a global public health concern in recent decades. Although several investigations evaluated AMR in commensal and pathogenic bacteria from different foods of animal origin in Australia, there is a lack of studies that compared AMR in commensal E. coli isolated from retail table eggs obtained from different laying hen housing systems. This study aimed to determine AMR and differences in AMR patterns among E. coli isolates recovered from retail table eggs sourced from caged and non-caged housing systems in Western Australia. Commensal E. coli isolates were tested for susceptibility to 14 antimicrobials using a broth microdilution method. Clustering analyses and logistic regression models were applied to identify patterns and differences in AMR. Overall, there were moderate to high frequencies of resistance to the antimicrobials of lower importance used in Australian human medicine (tetracycline, ampicillin, trimethoprim, and sulfamethoxazole) in the isolates sourced from the eggs of two production systems. All E. coli isolates were susceptible to all critically important antimicrobials except the very low level of resistance to ciprofloxacin. E. coli isolates from eggs of non-caged systems had higher odds of resistance to tetracycline (OR = 5.76, p < 0.001) and ampicillin (OR = 3.42, p ≤ 0.01) compared to the isolates from eggs of caged systems. Moreover, the number of antimicrobials to which an E. coli isolate was resistant was significantly higher in table eggs from non-caged systems than isolates from caged systems' eggs. Considering the conservative approach in using antimicrobials in the Australian layer flocks, our findings highlight the potential role of the environment or human-related factors in the dissemination and emergence of AMR in commensal E. coli, particularly in retail table eggs of non-cage system origin. Further comprehensive epidemiological studies are required to better understand the role of different egg production systems in the emergence and dissemination of AMR in commensal E. coli.

10.
Curr Res Food Sci ; 6: 100434, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36687171

RESUMEN

Campylobacter is a major cause of gastroenteritis worldwide, with broiler meat accounting for most illnesses. Antimicrobial intervention is recommended in severe cases of campylobacteriosis. The emergence of antimicrobial resistance (AMR) in Campylobacter is a concerning food safety challenge, and monitoring the trends of AMR is vital for a better risk assessment. This study aimed to characterize the phenotypic profiles and molecular markers of AMR and virulence in the prevalent Campylobacter species contaminating chilled chicken carcasses sampled from supermarkets in the United Arab Emirates (UAE). Campylobacter was detected in 90 (28.6%) out of 315 tested samples, and up to five isolates from each were confirmed using multiplex PCR. The species C. coli was detected in 83% (75/90) of the positive samples. Whole-genome sequencing was used to characterize the determinants of AMR and potential virulence genes in 45 non-redundant C. coli isolates. We identified nine resistance genes, including four associated with resistance to aminoglycoside (aph(3')-III, ant(6)-Ia, aph(2″)-Ib, and aac(6')-Im), and three associated with Beta-lactam resistance (blaOXA-61, blaOXA-193, and blaOXA-489), and two linked to tetracycline resistance (tet(O/32/O), and tet(O)), as well as point mutations in gyrA (fluoroquinolones resistance), 23S rRNA (macrolides resistance), and rpsL (streptomycin resistance) genes. A mutation in gyrA 2 p.T86I, conferring resistance to fluoroquinolones, was detected in 93% (42/45) of the isolates and showed a perfect match with the phenotype results. The simultaneous presence of blaOXA-61 and blaOXA-193 genes was identified in 86.6% (39/45) of the isolates. In silico analysis identified 7 to 11 virulence factors per each C. coli isolate. Some of these factors were prevalent in all examined strains and were associated with adherence (cadF, and jlpA), colonization and immune evasion (capsule biosynthesis and transport, lipooligosaccharide), and invasion (ciaB). This study provides the first published evidence from the UAE characterizing Campylobacter virulence, antimicrobial resistance genotype, and phenotype analysis from retail chicken. The prevalent C. coli in the UAE retail chicken carries multiple virulence genes and antimicrobial resistance markers and exhibits frequent phenotype resistance to macrolides, quinolones, and tetracyclines. The present investigation adds to the current knowledge on molecular epidemiology and AMR development in non-jejuni Campylobacter species in the Middle East and globally.

11.
Antibiotics (Basel) ; 11(10)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36289933

RESUMEN

Transmission of pathogenic microorganisms in the last decades has been considered a significant health hazard and pathogenic E. coli, particularly antibiotic-resistant strains, have long been identified as a zoonotic problem. This study aimed to investigate multidrug resistant pathogenic E. coli isolates from wild birds, chickens, and environment in selected Orang Asli and Malay villages in Peninsular Malaysia. The bacteriological culture-based technique, disc diffusion method, and multiplex Polymerase Chain Reaction (mPCR) assay was used to determine the occurrence of pathogenic E. coli strains in the several samples in the study. E. coli isolates showed a variety of multi-drug resistant (MDR) antibiotypes and Enteropathogenic E. coli (EPEC) and Enteroinvasive E. coli (EIEC) were the most predominantly identified pathogenic E. coli strains. The findings of this study demonstrated the significance of animal reservoirs and the environment as sources of pathogenic E. coli, resistant bacteria, and resistance genes. Hence, there is a need for adoption of a practical surveillance approach on MDR pathogens to control foodborne contamination.

12.
Antibiotics (Basel) ; 11(10)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36290012

RESUMEN

Antimicrobial resistance (AMR) is a global problem that also includes countries of the Arabian Peninsula. Of particular concern, is the continuing development of extended-spectrum ß-lactamases (ESBLs) in the countries of this region. Additionally, antibiotic treatment options for ESBL-producing bacteria are becoming limited, primarily due to the continuing development of carbapenem resistance (CR), carbapenems being frequently used to treat such infections. An overview of recent publications (2018-2021) indicates the presence of ESBL and/or CR in patients and hospitals in most countries of the Arabian Peninsula, although the delay between microbial isolation and publication inevitably makes an accurate analysis of the current situation rather difficult. However, there appears to be greater emphasis on CR (including combined ESBL and CR) in recent publications. Furthermore, although publications from Saudi Arabia are the most prevalent, this may simply reflect the increased interest in ESBL and CR within the country. Enhanced ESBL/CR surveillance is recommended for all countries in the Arabian Peninsula.

13.
Int J Food Microbiol ; 379: 109835, 2022 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-35863148

RESUMEN

Plasmid-borne colistin resistance is considered one of the most complex public health concerns worldwide. Several studies reported the presence of the mcr-1.1 harboring Salmonella from the foodstuffs worldwide; still, there is a knowledge gap about the occurrence of these isolates in the Middle East. In this study, we report an mcr-1.1-mediated colistin resistance in two multidrug-resistant (MDR) S. Minnesota (denoted as Sal_2 and Sal_10), with both being also extended-spectrum ß-lactamase (ESBL) producing. These isolates have been recovered from two independent samples out of 315 chilled chicken meat tested from retail supermarkets in the United Arab Emirates (UAE). Based on whole-genome sequencing (WGS) analysis, both isolates belonged to the same Sequence Type (ST) ST548. They shared the same genes encoding resistance to the following antimicrobials: polymyxin (mcr-1.1), phenicol (floR), quinolone (qnrB19), aminoglycoside (aac(6')-Iaa), tetracycline (tet(A)), and sulfonamide (sul2). However, the isolates featured different patterns of ß-lactamase resistance genes, which included blaCTX-M-55 (ESBL-ß-lactamase) and blaCMY-2 (AmpC-ß-lactamase) in the isolate Sal_2, and blaTEM-215 (ESBL-ß-lactamase) in the isolate Sal_10. WGS analysis inferred that both S. Minnesota isolates in this study carry an IncX4 plasmid harboring the mcr-1.1 variant. To understand the possible origin of the two mcr-1.1 carrying S. Minnesota isolated from retail chicken meat in this study, we conducted a phylogenomic analysis using available genomes of S. enterica, which harbored mcr-1.1 gene (n = 240, from the Middle East and Asian countries) deposited in the NCBI database. We found that Sal_2 and Sal_10 independently clustered together with other isolates detected in China, mainly from the chicken origin and to a lesser extent from human clinical origin. The finding of mcr-producing colistin-resistant strains in retail chicken meat warrants a more comprehensive One Health investigations involving strains from animals, retail food chains, and human clinical isolates at the national level in the UAE.


Asunto(s)
Colistina , Proteínas de Escherichia coli , Animales , Antibacterianos/farmacología , Pollos/genética , Colistina/farmacología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Genómica , Humanos , Carne/análisis , Plásmidos/genética , Salmonella/genética , Supermercados , beta-Lactamasas/genética
14.
Foodborne Pathog Dis ; 19(9): 590-597, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35749143

RESUMEN

Enterococci have recently emerged as nosocomial pathogens worldwide. Their ubiquitous nature determines their frequent finding in foods as contaminants. In this study, we aimed to determine the counts, species diversity, antimicrobial resistance profile, and to screen for a set of virulence genes among enterococci. Enterococcus were identified from 75.7% (125/165) of chilled chicken carcasses, belonging to seven companies, sampled from retail markets in Abu Dhabi Emirate, United Arab Emirates (U.A.E.). Overall, the samples, with a mean Enterococcus count of 2.58 log10 colony-forming unit (CFU)/g with a standard deviation of ±1.17 log10 CFU/g. Among the characterized Enterococcus isolates (n = 90), Enterococcus faecalis was the predominant species (51.1%), followed by Enterococcus faecium (37.8%). Using Vitek2 automated antimicrobial sensitivity panel, we found none of the E. faecalis nor E. faecium to be resistant to ampicillin, teicoplanin, vancomycin, or tigecycline. A third of the E. faecalis (28.3%) and E. faecium (35.3%) were resistant to high-level gentamicin. Over half of E. faecalis (54.3%) were resistant to ciprofloxacin, and the same was in about a third of E. faecium isolates (29.4%). Linezolid resistance was identified in 10 E. faecalis and 7 E. faecium isolates belonging to samples from three companies. All of the linezolid-resistant isolates harbored oxazolidinone resistance optrA gene. Virulence-associated genes (asa1 and gelE) were significantly (p < 0.05) more detected among E. faecalis compared to E. faecium isolates recovered in this study. Over half of the E. faecalis (25/46) and E. faecium (20/34) isolates were identified as multidrug-resistant. This study provides further insight into virulence genes and their association with the dissemination of multidrug-resistant E. faecalis and E. faecium in supermarket chicken meat in the U.A.E. This is probably the first description of the optrA gene in enterococci from supermarket chicken meat in the U.A.E. and from Arab countries. This study adds to the regional and global understanding of antimicrobial resistance spread in foods of animal origin.


Asunto(s)
Enterococcus faecium , Infecciones por Bacterias Grampositivas , Animales , Antibacterianos/farmacología , Pollos , Farmacorresistencia Bacteriana/genética , Enterococcus/genética , Enterococcus faecalis/genética , Enterococcus faecium/genética , Infecciones por Bacterias Grampositivas/epidemiología , Infecciones por Bacterias Grampositivas/veterinaria , Linezolid/farmacología , Pruebas de Sensibilidad Microbiana , Emiratos Árabes Unidos , Virulencia/genética
15.
Int J Food Microbiol ; 376: 109760, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-35661557

RESUMEN

Although, Campylobacter spp. are a major cause of foodborne gastroenteritis, its occurrence and antimicrobial resistance traits have not been well defined in low income countries, particularly in Africa. In this study, retail chicken was sampled (n = 400) between February 2019 to January 2020 in Metropolitan Accra, Ghana, to determine the prevalence and antimicrobial susceptibility pattern of Campylobacter jejuni. Raw chicken samples were obtained in wet markets (n = 315) and supermarkets (n = 85) and each subjected to direct plating and broth enrichment according to standard culture methods for Campylobacter spp. with the identity of presumptive positive colonies confirmed by MALDI-TOF. The susceptibility of isolates to antibiotics commonly used for campylobacteriosis in humans (in order to reflect the One Health significance of Campylobacter at the human-food interface) were then assessed by disc diffusion. A prevalence of 38.3% was recorded and all isolates were confirmed as Campylobacter jejuni. Enrichment yielded 127 positives while direct plating yielded 55 positives with low level of agreement in detection between these assays (Kappa = 0.15). Among samples positive by direct plating, the mean Campylobacter count was 1.9 log10 CFU/g (sd ±0.8). About 13% (7/55) of the samples positive by direct plating contained counts of 3log and above. Samples from the wet market yielded more positives than those from the supermarket with the rate of isolation from wet markets being 1.6 times that of the supermarket. Among 182 isolates characterized for their antimicrobial susceptibility, resistance to fluoroquinolones was 99.5%, tetracyclines 100% and macrolides 26.9%. Multi-drug resistance was also observed in 26.9% of the screened isolates. The findings point to a potential high level of exposure of humans to Campylobacter jejuni through chicken meat and thus the need for education on hygienic preparation and handling of raw chicken. High rates of resistance to classes of antimicrobials critically important for treating Campylobacter infections in humans; fluroquinolones and macrolides, affirm the need for stronger regulatory control of antimicrobials and enhanced antimicrobial stewardship in chicken production.


Asunto(s)
Infecciones por Campylobacter , Campylobacter coli , Campylobacter jejuni , Campylobacter , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones por Campylobacter/tratamiento farmacológico , Infecciones por Campylobacter/epidemiología , Infecciones por Campylobacter/veterinaria , Pollos , Ghana/epidemiología , Macrólidos/uso terapéutico , Carne , Pruebas de Sensibilidad Microbiana , Prevalencia
16.
Foods ; 11(20)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37430937

RESUMEN

The foodborne transfer of resistant genes from enterococci to humans and their tolerance to several commonly used antimicrobials are of growing concern worldwide. Linezolid is a last-line drug for managing complicated illnesses resulting from multidrug-resistant Gram-positive bacteria. The optrA gene has been reported in enterococci as one of the acquired linezolid resistance mechanisms. The present study uses whole-genome sequencing analysis to characterize the first reported isolates of linezolid-resistant E. faecium (n = 6) and E. faecalis (n = 10) harboring the optrA gene isolated from samples of supermarket broiler meat (n = 165) in the United Arab Emirates (UAE). The sequenced genomes were used to appraise the study isolates' genetic relatedness, antimicrobial resistance determinants, and virulence traits. All 16 isolates carrying the optrA gene demonstrated multidrug-resistance profiles. Genome-based relatedness classified the isolates into five clusters that were independent of the isolate sources. The most frequently known genotype among the isolates was the sequence type ST476 among E. faecalis (50% (5/10)). The study isolates revealed five novel sequence types. Antimicrobial resistance genes (ranging from 5 to 13) were found among all isolates that conferred resistance against 6 to 11 different classes of antimicrobials. Sixteen different virulence genes were found distributed across the optrA-carrying E. faecalis isolates. The virulence genes in E. faecalis included genes encoding invasion, cell adhesion, sex pheromones, aggregation, toxins production, the formation of biofilms, immunity, antiphagocytic activity, proteases, and the production of cytolysin. This study presented the first description and in-depth genomic characterization of the optrA-gene-carrying linezolid-resistant enterococci from retail broiler meat in the UAE and the Middle East. Our results call for further monitoring of the emergence of linezolid resistance at the retail and farm levels. These findings elaborate on the importance of adopting a One Health surveillance approach involving enterococci as a prospective bacterial indicator for antimicrobial resistance spread at the human-food interface.

17.
Foods ; 10(10)2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34681418

RESUMEN

Foodborne infections caused by bacterial pathogens are a common cause of human illness in the Middle East, with a substantial burden of economic loss and public health consequences. This review aims at elucidating recent literature on the prevalence of Non-Typhoidal Salmonella (NTS), Campylobacter and Listeria monocytogens in the food chain in the Arab countries, and to consolidate available evidence on the public health burden and the status of antimicrobial resistance (AMR) among the concerned three pathogens. The reviewed evidence points to a scarcity of understanding of the magnitude of NTS in the food chain in the Arab countries. Additionally, not much work has been done at the molecular characterization level to address the source-attribution of NTS in the Arab World. Very few surveys have been done on Campylobacter in the food chain in the Gulf Cooperation Council (GCC) countries. There is a gap in quantitative (counts/numbers) surveillance efforts for Campylobacter in the chicken meat supply across all Arab countries, despite the availability of some qualitative (presence/absence) surveillance data. While there are several reports on L. monocytogenes in animal-sourced foods, notably in North African Arab countries, fewer are published on L. monocytogenes in plant-sourced foods. Information on the L. monocytogenes serotypes and strain diversity circulating in the Arab region is widely lacking. Antibiotic resistance in the three pathogens is not fully understood across the Arab region, despite some reports indicating varying trends at the human-food interface. The literature evidence presented in this review stresses that Salmonella, Campylobacter and L. monocytogenes continue to challenge food safety and public health in the Arab countries.

18.
Animals (Basel) ; 11(8)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34438649

RESUMEN

This study was performed to investigate the knowledge, attitudes, and practices (KAPs) of farmers, animal traders, and veterinary professionals on FMD in Baghlan province, Afghanistan. Four structured questionnaires were administered to the respondents. Almost half (48.5%) of the farmers had heard of the occurrence of FMD in their neighbourhood or knew the name of the disease. The majority of farmers could recognise the clinical signs of FMD in their animals (salivation, 85.9%; tongue ulcers, 78.8%; gum lesions, 78.2%; hoof lesions, 76.8%). Most farmers stated that the "introduction of new animals" was the primary cause of FMD appearing on their farms and to control the spread of the disease, over half of the farmers (56%) preferred not to buy cattle from unknown or potentially infected sources. Animal traders' knowledge was limited to recognising some clinical signs of the disease such as: salivation, and lesions in the mouth and on the feet. No animals were directly imported by the traders from outside Afghanistan. Over half of the local veterinary professionals (65%) kept record books of the animal diseases seen and/or treatment plans undertaken, and 80% of them reported the occurrence of FMD to the provincial, regional, and central veterinary authorities. No regular vaccination programme against FMD was implemented in the province. Poor import controls and quarantine were considered to be the main barriers to the control of FMD in the study area and the surrounding provinces. It can be concluded that, despite relatively good knowledge about FMD in the study area, there are gaps in farmers' and traders' knowledge that need to be addressed to overcome the burden of the disease in the province. These should focus on strengthening interprovincial quarantine measures and implementation of regular vaccination campaigns against the circulating FMDV within the area.

19.
Vaccines (Basel) ; 9(8)2021 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-34452003

RESUMEN

Brucellosis is a major economic and production-limiting disease for livestock owners and the community in Iraq. A cost-benefit analysis was conducted to evaluate the impact of an expanded annual mass vaccination programme of sheep and goats that involves all female and male sheep and goats over the age of 3 months with Rev. 1 vaccine. The proposed expanded vaccination programme was compared to the current annual vaccination program, which involved only vaccinating female sheep and goats between the ages of 3 and 6 months of age with Rev. 1. The cost-benefit analysis model was developed utilizing data collected in Dohuk Governorate, northern Iraq. The seroprevalence in small ruminants (using Rose Bengal test and ELISA in series) was predicted to decrease from 9.22% to 0.73% after 20 years of implementing the proposed annual mass vaccination program. The net present value of the mass vaccination program was estimated to be US$ 10,564,828 (95% Confidence Interval (CI): -16,203,454 to 37,049,245), the benefit-cost ratio was estimated to be 4.25 (95% CI: -2.71 to 11.22), and the internal rate of return was 91.38% (95% CI:11.71 to 190.62%). The proposed vaccination strategy was predicted to decrease the overall financial loss caused by brucellosis from 1.75 to 0.55 US$ per adult female animal. The results of this economic analysis highlight the benefit of implementing an annual mass vaccination program of small ruminants with Rev. 1 vaccine to reduce the prevalence of brucellosis in northern Iraq.

20.
Front Vet Sci ; 8: 666767, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34322531

RESUMEN

Non-typhoidal Salmonella, particularly Salmonella enterica serovar Typhimurium (S. Typhimurium), is the predominant endemic serovar in the Australian egg production industry and is one of the most frequently reported serovars in foodborne infections in Australia. This study was conducted to investigate the genomic characteristics of Salmonella isolated from retail table eggs in Western Australia and to identify the impact of production systems on genomic characteristics of Salmonella such as virulence and antimicrobial resistance. A total of 40 non-typhoidal Salmonella isolates [S. Typhimurium isolates (n = 28) and Salmonella Infantis isolates (n = 12)] sourced from retail eggs produced by different production systems (barn-laid, cage, and free-range) in Western Australia were sequenced by whole-genome sequencing. The isolates were de novo assembled, annotated, and analyzed. The results indicated an association between Salmonella genomic variation and the system used to raise poultry for egg production (p-value < 0.05). All but one of the S. Infantis isolates were recovered from eggs collected from poultry raised under barn and cage production systems. A higher proportion (83.3%) of S. Typhimurium isolates were recovered from the eggs produced by free-range production system as compared with those produced under barn (76.9%) and cage production systems (53.3%). Our analysis indicated that Salmonella isolated from the eggs produced by barn and cage production systems had more virulence genes than the isolates of the free-range produced eggs. A low carriage of antimicrobial-resistant gene was detected in the isolates of this study. We have built a Salmonella genomics database and characteristics-linked gene pools to facilitate future study, characterization, and tracing of Salmonella outbreaks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...